一、答题策略选择
1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。当然,对于不同的
学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;
2.
选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。切记不要“小题大做”。注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。多写不会扣分,写了就可能得分。
二、答题思想方法
1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;
4.选择与填空中出现不等式的题目,优选特殊值法;
5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;
11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;
12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;
三、每分必争
1.
答题时间共120分,而你要答分数为150分的考卷,算一算就知道,每分钟应该解答1分多的题目,所以每1分钟的时间都是重要的。试卷发到手中首先完成必要的检查(是否有印刷不清楚的地方)与填涂。之后剩下的时间就马上看试卷中可能使用到的公式,做到心中有数。用心算简单的题目,必要时动一动笔也不是不行(你是写名字或是写一个字母没有人去区分)。
2.在分数上也是每分必争。你得到89分与得到90分,虽然只差1分,但是有本质的不同,一个是不合格一个是合格。高考中,你得556分与得557分,虽然只差1分,但是它决定你是否可以上重本线,关系到你的一生。所以,在答卷的时候要精益求精。对选择题的每一个选择支进行评估,看与你选的相似的那个是不是更准确?填空题的范围书写是不是集合形式,是不是少或多了一个端点?是不是有一个解应该舍去而没舍?解答题的步骤是不是按照公式、代数、结果的格式完成的,应用题是不是设、列、画(线性归化)、解、答?根据已知条件你还能联想到什么?把它写在考卷上,也许它就是你需要的关键的1分,为什么不去做呢?
3.答题的时间紧张是所有
同学的感觉,想让它变成宽松的方法只有一个,那就是学会放弃,准确的判断把该放弃的放弃,就为你多得1分提供了前提。
4.冷静一下,表面是耽误了时间,其实是为自己赢得了机会,可能创造出奇迹。在头脑混乱的时候,不防停下来,喝口水,深吸一口气,再慢慢呼出,就在呼出的同时,你就会得到灵感。
5.题目分析受挫,很可能是一个重要的已知条件被你忽略,所以重新读题,仔细读题才能有所发现,不能停留在某一固定的思维层面不变。联想你做过的类似的题目的解题方法,把不熟悉的转化为你熟悉的也许就是成功。
6.
高考只是人生的重要考试之一,其实人生是由每一分钟组成的。把握好人生的每一分钟才能真正把握人生。高考就是广州三模罢了,其实真正的高考是在你生活的每1分钟里。
点击报名